Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 5713

Corrigendum

Corrigendum to "Epibatidine structure-activity relationships" [Bioorg. Med. Chem. Lett. 14 (2004) 1889]

F. Ivy Carroll*

Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA Available online 15 September 2004

A correction to Ref. 25 in this review article was published in June 2004 J. Chem. Soc., Perkin Trans. Issue. The correction showed that the data reviewed in Table 9 (page 1893) for structures 12 and 15 should be transposed and the discussion on page 1894 updated. The revised table and discussion follow.

The 5- and 6-(2'-chloro-5'-pyridinyl)heptanes 12–15 can be viewed as epibatidine analogs where the 7-position nitrogen of epibatidine (1) has been moved to the 5- or 6-position of the 7-azabicyclo[2.2.1] ring. Cox et al. have synthesized all four analogs and evaluated their $\alpha 4\beta 2$ and $\alpha 7$ nAChR potency for inhibition of [³H]nicotine binding to rat cortical membranes and [¹²⁵I]BTX binding in rat hippocampal membranes, respectively.²⁵ These authors found that **14** and 15 with K_i values of 0.045 nM and 0.056 nM for $\alpha 4\beta 2$ nAChRs were almost as potent as epibatidine (1), which showed a K_i value of 0.02 nM in their studies (Table 9). Compounds 12 and 14 showed K_i values of 1600 and 3.9 nM for α 7 nAChR (Table 9). Compounds 12 and 13 possessed low affinity for both α4β2 as well as α7 nAChRs. Dart and coworkers also synthesized analogs 12-14 and evaluated their α4β2 nAChR potency using whole rat brain tissue and [³H]cytisine as the radioligand. These authors also found **14** to be the more potent compound. Under these conditions, compound 14 with a K_i value of 0.032 nM was equipotent to epibatidine with a K_i value of 0.04 nM. Similar to Cox and Malpass et al., ²⁵ Dart et al. found analog 12 to have relatively low affinity (K_i 6.6 nM compared to >38 nM) for $\alpha 4\beta 2$ nAChRs.

Table 9. Radioligand binding and antinociceptive potency of 7-azabicyclo[2.2.1]heptane ring modified analogs of epibatidine

Compd	[3 H]Ligand (K_i , nM)	[125 I] α -BTX b	Tail-Flick EC ₅₀ (mg/g)
Epibatidine (1)	0.090, a 0.02, b 0.04, c 0.26d		0.01 ^a
10	0.47^{a}		0.04^{a}
11	0.34^{a}		1.4 ^a
12	>38, ^b 6.6 ^c	1600	
13	>38, b 30°	3300	
14	0.045, b 0.032°	3.9	
15	$0.056^{\rm b}$	6.3	
(+)-16	0.13^{d}		
(-)- 16	0.35^{d}		
17	1.25 ^d		
18	1.6 ^e		
19	$3.9^{\rm f}$		
20	$5.0^{\rm f}$		

^a Taken from Ref. 32; [³H]cytisine.

DOI of original article: 10.1016/j.bmcl.2004.02.007

^b Taken from Ref. 25; [³H]nicotine.

^c Taken from Ref. 11; [³H]cytisine. ^d Taken from Ref. 33; [³H]nicotine.

^e Taken from Ref. 34; [³H]epibatidine.

^f Taken from Ref. 35; [³H]cytisine.

^{*}Tel.: +1 919 541 6679; fax: +1 919 541 8868; e-mail: fic@rti.org